Extensions 1→N→G→Q→1 with N=C23.F5 and Q=C2

Direct product G=N×Q with N=C23.F5 and Q=C2
dρLabelID
C2×C23.F580C2xC2^3.F5320,1137

Semidirect products G=N:Q with N=C23.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.F51C2 = C5⋊C2≀C4φ: C2/C1C2 ⊆ Out C23.F5408+C2^3.F5:1C2320,202
C23.F52C2 = C242F5φ: C2/C1C2 ⊆ Out C23.F5404C2^3.F5:2C2320,272
C23.F53C2 = (C2×D4).9F5φ: C2/C1C2 ⊆ Out C23.F5808-C2^3.F5:3C2320,1115
C23.F54C2 = D5⋊(C4.D4)φ: C2/C1C2 ⊆ Out C23.F5408+C2^3.F5:4C2320,1116
C23.F55C2 = (C4×D5).D4φ: trivial image804C2^3.F5:5C2320,1099

Non-split extensions G=N.Q with N=C23.F5 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.F5.1C2 = C22⋊C4⋊F5φ: C2/C1C2 ⊆ Out C23.F5808-C2^3.F5.1C2320,203
C23.F5.2C2 = (C22×C4)⋊F5φ: C2/C1C2 ⊆ Out C23.F5804C2^3.F5.2C2320,254

׿
×
𝔽